Annexin 2 promotes the formation of lipid microdomains required for calcium-regulated exocytosis of dense-core vesicles.
نویسندگان
چکیده
Annexin 2 is a calcium-dependent phospholipid-binding protein that has been implicated in a number of membrane-related events, including regulated exocytosis. In chromaffin cells, we previously reported that catecholamine secretion requires the translocation and formation of the annexin 2 tetramer near the exocytotic sites. Here, to obtain direct evidence for a role of annexin 2 in exocytosis, we modified its expression level in chromaffin cells by using the Semliki Forest virus expression system. Using a real-time assay for individual cells, we found that the reduction of cytosolic annexin 2, and the consequent decrease of annexin 2 tetramer at the cell periphery, strongly inhibited exocytosis, most likely at an early stage before membrane fusion. Secretion also was severely impaired in cells expressing a chimera that sequestered annexin 2 into cytosolic aggregates. Moreover, we demonstrate that secretagogue-evoked stimulation triggers the formation of lipid rafts in the plasma membrane, essential for exocytosis, and which can be attributed to the annexin 2 tetramer. We propose that annexin 2 acts as a calcium-dependent promoter of lipid microdomains required for structural and spatial organization of the exocytotic machinery.
منابع مشابه
Annexin A2–dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis
Annexin A2, a calcium-, actin-, and lipid-binding protein involved in exocytosis, mediates the formation of lipid microdomains required for the structural and spatial organization of fusion sites at the plasma membrane. To understand how annexin A2 promotes this membrane remodeling, the involvement of cortical actin filaments in lipid domain organization was investigated. 3D electron tomography...
متن کاملRNAi screen identifies a role for adaptor protein AP-3 in sorting to the regulated secretory pathway
The regulated release of proteins depends on their inclusion within large dense-core vesicles (LDCVs) capable of regulated exocytosis. LDCVs form at the trans-Golgi network (TGN), but the mechanism for protein sorting to this regulated secretory pathway (RSP) and the cytosolic machinery involved in this process have remained poorly understood. Using an RNA interference screen in Drosophila mela...
متن کاملOligophrenin-1: the link between calcium-regulated exocytosis and compensatory endocytosis in neuroendocrine cells
In neuroendocrine cells, hormones and neuropeptides are released from large-dense core vesicles (secretory granules) by calcium-regulated exocytosis. Following exocytosis, compensatory uptake of membrane is required to maintain membrane homeostasis and allow recycling of secretory vesicle membranes. How these cells initiate and regulate this compensatory endocytosis remains poorly understood. O...
متن کاملMunc18-1 Promotes Large Dense-Core Vesicle Docking
Secretory vesicles dock at the plasma membrane before Ca(2+) triggers their exocytosis. Exocytosis requires the assembly of SNARE complexes formed by the vesicle protein Synaptobrevin and the membrane proteins Syntaxin-1 and SNAP-25. We analyzed the role of Munc18-1, a cytosolic binding partner of Syntaxin-1, in large dense-core vesicle (LDCV) secretion. Calcium-dependent LDCV exocytosis was re...
متن کاملSynthesis of fusogenic lipids through activation of phospholipase D1 by GTPases and the kinase RSK2 is required for calcium-regulated exocytosis in neuroendocrine cells.
Exocytosis of hormones occurs through the fusion of large dense-core secretory vesicles with the plasma membrane. This highly regulated process involves key proteins such as SNAREs (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptors) and also specific lipids at the site of membrane fusion. Among the different lipids required for exocytosis, our recent observations ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology of the cell
دوره 16 3 شماره
صفحات -
تاریخ انتشار 2005